
A Low-Cost Motion Capture System for Body
Tracking using Synchronized Azure Kinect DK

Jongoh (Andy) Jeong, Yue (Leo) Wang, Mili Shah

May 3, 2020

Kinect Synchronization Jeong, Wang

Abstract

In this paper we introduce a synchronized system of Microsoft Azure Kinects
in order to create a low-cost motion capture system capable of body tracking.
In particular, we combine data from each Kinect’s body tracking software de-
velopment kit (SDK) to output a single stream of human body joint positions.
This single stream of data is advantageous in an environment where various
factors, such as occlusion and illumination, may disrupt body joint estimation.
Here, we discuss the methodology and requirements necessary to build such a
system, the tools needed to synchronize and calibrate the system, and finally
describe applications and future directions for this system.

Contents

1 Introduction 2

2 Azure Kinect DK 2

3 Related Work 3

4 Environment Setup 3
4.1 Configuration . 4
4.2 System Settings . 5

5 Procedure 6
5.1 Steps . 7
5.2 Joint angles . 10

6 Results 13

7 Future Directions 13

1

Kinect Synchronization Jeong, Wang

1 Introduction

The objective of this project is to develop a low-cost motion capture system that
can be used as a remedy to common professional, yet much more expensive motion
capture (MOCAP) systems. A network of multiple Microsoft Azure Kinect DK’s,
each at a cost of $399, is still cheaper than a MOCAP system (at least 6 figures in
cost). We find that there are numerous applications from which one can design and
utilize using this synchronized system that we propose in this report.

This report is organized as follows: we discuss the general specifications of Azure
Kinect DK released in mid-2019 in Section 2, review related works in Section 3,
describe the environment for testing in Section 4, discuss the procedure to synchro-
nizing multiple Kinect devices in Section 5, examine the outcomes in Section 6, and
consider future directions and potential applications of this system in Section 7.

2 Azure Kinect DK

Microsoft Azure Kinect DK1 is a developer kit for handling sophisticated tasks using
sensor software development kit (SDK), body tracking SDK, speech SDK, and com-
puter vision APIs. Each unit contains a 12-Megapixel RGB and a 1-Megapixel depth
camera with various operating modes as described in Table 1, 7-microphone array
for speech and sound, accelerometer and gyroscope (IMU) for sensor orientation and
spatial tracking. The external pins on the rear side allows for synchronizing multiple
devices together. For this integration of functionalities, this device itself provides
numerous potential in the industry, as presented at the showcase in May 2019 (see
Figure 1.

Figure 1: Industry Applications of Azure Kinect DK

1https://azure.microsoft.com/en-us/services/kinect-dk/

2

https://azure.microsoft.com/en-us/services/kinect-dk/

Kinect Synchronization Jeong, Wang

We primarily focus on utilizing the RGB and depth camer sensors and the open-
sourced body tracking SDKs for this project. In particular, we leverage the improved
body tracking SDK that gives 32 joint position data verses the previous version that
only gave 25 (see Figure 3).

Mode Resolution FPS Operating Range Exposure Time
NFOV unbinned 640x576 0,5,15,30 0.5 – 3.86 m 12.8 ms
NFOV 2x2 binned 320x288 0,5,15,30 0.5 – 5.46 m 12.8 ms
WFOV 2x2 binned 512x512 0,5,15,30 0.25 – 2.88 m 12.8 ms
WFOV unbinned 1024x1024 0,5,15 0.25 – 2.21 m 20.3 ms

Passive IR 1024x1024 0,5,15,30 N/A 1.6 ms

Table 1: Depth Camera Modes

A sample shown at the system showcase event in 2019 is shown in Figure 2.
Note that there is clearly difference between narrow and wide fields of view in the
shape (hexagonal vs spherical) and range of observable objects, and between level of
granularity in depth sensing capabilities in binned and unbinned modes. However,
we also need to take into account the resolution of the camera in each mode (see
Table 1). It seems that the best is wider field of view in binned modes, but we
forgo the wider angle and resolution in compensation. For this initial step towards
synchronization, we decided to work from the NFOV unbinned mode and expand
further by verifying each step in a restricted environments.

3 Related Work

Islam et al. uses joint angle estimates from a single Kinect (v2) to recognize a certain
Yoga posture. They base their error on a reference model developed from joint data
of gymnastics. We differ in that we utilize multiple devices to minimize angular
distances of joints and increase accuracy in case of an occlusion [3].

Napoli et al. compares joint angles calculated from Kinect (v2) positions and
orientations with a professional motion capture system (Qualisys) at various postures
and planes. Similarly, we extend this to a multi-device system for higher precision [4].

4 Environment Setup

The first step towards syncing the Kinects is the physical configuration. Since the
estimated coordinates are given in the floating-point triples (x,y,z) in units of mil-

3

Kinect Synchronization Jeong, Wang

Figure 2: Depth Modes Sample

limeters, we maintain the precision level in the 32-bit single-precision throughout the
process. For taking synchronized captures from all devices, we enhance the exam-
ple code (green screen) from the Azure Kinect Sensor SDK Github repository2 by
setting the maximum allowed time offset between each pair of RGB cameras to be
33 milliseconds and the minimum time offset between the two depth images to be
160 microseconds. The RGB camera resolution is set to 720P, BGRA32 format at
30 FPS, and the depth camera resolution to NFOV-unbinned mode.

4.1 Configuration

Following the daisy-chain configuration, we connect the master to subordinate de-
vices in order using audio jack (male-to-male) cables (see Figure 4 and 5). This
configuration allows for one-to-many synchronization whereas the star configuration
allows only up to 2 subordinate modes. The sync-out port of the master should be
connected to the sync-in port of the subsequent subordinate device, and so on. For
testing, we set up the three devices in the following manner shown in Figure 63.

2https://github.com/microsoft/Azure-Kinect-Sensor-SDK
3https://docs.microsoft.com/en-us/azure/kinect-dk/multi-camera-sync

4

Kinect Synchronization Jeong, Wang

Figure 3: 25 joints for Windows Kinect v2 (2014) on left,
32 joints for Azure Kinect DK (2019) on right

4.2 System Settings

To deliver captures from both depth and RGB cameras, each unit requires a certain
bandwidth for data transfer via USB. By default, most Linux-based machines allocate
USB controllers 16 MB of kernel memory to handle USB. To work with more than
one device, modify in /etc/default/grub file,

GRUB CMDLINE LINUX DEFAULT="quiet splash usbcore.usbfs memory mb=###"

where ‘###’ = 16 MB * (# of devices) and in bash shell, type sudo update-grub, or,

sudo sh -c ’echo ### > /sys/module/usbcore/parameters/usbfs memory mb’

The parameters for running the program are set as follows, after several experiments:

1. chessboard height: 9

2. chessboard width: 6

3. chessboard square length: 15

4. depth threshold (mm): 1000 (default)

5. color exposure (ms): 8000 (default)

5

Kinect Synchronization Jeong, Wang

Figure 4: Daisy Chain Configuration in Physical Setup

Figure 5: Daisy-chain configuration

6. powerline frequency (Hz): 60 (default)

7. calibration timeout: ∞

5 Procedure

We approach the task of calibration by synchronously taking captures from all
master– and subordinate–mode cameras, transforming each estimated joint data
stream onto the master RGB camera space, and perspectively projecting homoge-
neous 3-D coordinates onto a 2-D plane (see Figure 7).

6

Kinect Synchronization Jeong, Wang

Figure 6: Testing Environment

Figure 7: Flowchart

5.1 Steps

Each subordinate device takes captures continuously until one is out of sync with the
master capture by the pre-defined maximum time offset. Each set of 32 joint data
points from each tracker is then transformed onto the master’s RGB camera space
using the least-squares fitting of two 3-D point sets [1]. In this method, we determine
the extrinsic components (rotation, translation) from singular value decomposition
(SVD), and apply the transformation from subordinate to master camera space. In
order to estimate the final joint data stream to visualize, for each skeleton we either
average body joints with identical confidence level among master and subordinate
streams in the order of medium to low confidence levels (medium is the highest as
of today). Then we take perspective transformation on this body joint stream [2].

7

Kinect Synchronization Jeong, Wang

The formula using the intrinsic camera matrix is shown in Equation 1. Note that the
current implementation assumes scaling factor s = 1, and we assume zero distortion.
We also make use of Rodrigues rotation vector r, which is a more convenient and
most compact representation of a rotation matrix R. The relationship between R
and r is shown in Equation 2 4.

s

uv
1

 =

fx 0 cx
0 fy 0
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

 (1)

s = scaling factor

[u; v; 1] = projected homogeneous point (2-D)

fx, fy, cx = master camera intrinsic

r11−33, t1−3 = computed extrinsic matrix

[X;Y ;Z; 1] = homogeneous point (3-D)

sin(θ)

 0 −rz ry
rz 0 −rx
−ry rx 0

 =
R−RT

2
(2)

Below are the steps in summary:

1. Calibrate master and subrordinate devices (see Figure 8)

2. For every detected body (numbered in order of appearance) from the cameras,
take synchronized captures and track skeletons from all devices

3. From joint positions, compute extrinsic calibration parameters and transform
subordinate onto master RGB camera space

4. Estimate body joints by combining streams of the higher confidence level (if
equal, then take the average)

5. Project homogeneous 3-D position coordinates onto a 2-D plane for display

We verify the synchronized outcomes by conducting experiments under occlu-
sion and various lighting conditions. In Figure 9, we initially found errors without

4https://docs.opencv.org/3.4/d9/d0c/group calib3d.htmlga61585db663d9da06b68e70cfbf6a1eac

8

Kinect Synchronization Jeong, Wang

Figure 8: Calibration using Chessboard

transforming the subordinate coordinates onto a single camera space (in yellow). Af-
ter uniformly transforming subordinates to master RGB camera space, we conducted
cases in which we set subordinate device #0 occluded (2nd image), #1 occluded (3rd
image), shined an additional light source at the master device (4th image), and then
we observed final synchronized output (in green), which appears to be very closely in
line with the system that uses only one. Further comparing 2- and 3-device systems
in Figure 10, we noticed the synchronized system taking the more confident joint
positions in an adaptive manner as desired. Figures 11,12,and 13 show consistency
in position norms between normal settings and occluded or shined light conditions.
The start of the plot is the normal environment, and each even prominent regions
depict the altered conditions. The differences seem to fall under a few centimeters
in range, which could also include human movement error due to misalignment in
re-positioning after applying changes (e.g. blocking the camera or adding a light
source).

Figure 9: Verification of Synchronized System under Occlusion and Illumination

9

Kinect Synchronization Jeong, Wang

Figure 10: 2- and 3-Device System Outputs

5.2 Joint angles

Joint angles designated as A – L in Figure 14 are computed using Equation 3 from
3-D positional coordinates [3]. The vectors p1 and p2 are generated from each pair
of joints listed in Table 2.

θpos = arctan2

(
|~p1 × ~p2|
~p1 · ~p2

)
(3)

Using ‘arctan’ for joint angles in R3 space requires an additional consideration for
negative angles in certain quadrants. Given that the value of tan(θ) is positive, we
cannot distinguish, whether the angle was from the first or third quadrant and if it
is negative, it could come from the second or fourth quadrant. The value of ‘atan’ is
thus an angle from the first or fourth quadrant (e.g. in range: [−π/2, π/2]), regardless
of the original input to the tangent. In order to get back the full information, we
must not use the result of the division sin/cos but we have to look at the values
of each numerator and denominator separately – ‘atan2’ takes both, the sine and
cosine, and resolves all four quadrants by adding π to the result of ‘atan’ whenever
the cosine is negative. In short, atan(y/x) assumes that the input came from either
quadrants I or IV, while atan2(y,x) resolves the correct angle in the correct quadrant.

10

Kinect Synchronization Jeong, Wang

Figure 11: Subordinate #0 in Occlusion

Figure 14: Observed Joint Angles

11

Kinect Synchronization Jeong, Wang

Figure 12: Subordinate #1 in Occlusion

Joint Angle Joint 1 Joint 2 Joint 3
A Shoulder Right (12) Elbow Right (13) Wrist Right (14)
B Shoulder Left (5) Elbow Left (6) Wrist Left (7)
C Clavicle Right (11) Shoulder Right (12) Elbow Right (13)
D Clavicle Left (4) Shoulder Left (5) Elbow Left (6)
E Spine naval (1) Pelvis (0) Hip Right (22)
F Spine naval (1) Pelvis (0) Hip Left (18)
G Pelvis (0) Hip Right (22) Knee Right (23)
H Pelvis (0) Hip Left (18) Knee Left (19)
I Hip Right (22) Knee Right (23) Ankle Right (24)
J Hip Left (18) Knee Left (19) Ankle Left (20)
K Knee Right (23) Ankle Right (24) Foot Right (25)
L Knee Left (19) Ankle Left (20) Foot Left (21)

Table 2: Observed Joint Angles

12

Kinect Synchronization Jeong, Wang

Figure 13: Master in Different Lighting Conditions

6 Results

Several experiments with these 1, 2, and 3-device systems have been run, and it is
observed that some joints are estimated consistently for these systems, while some
others have deviations from the single-camera system (master). The distance at
which the human body is located from the system seems to affect the estimation
significantly for each system. For instance, at one location the 3-device system
detected the body immediately while the 2-device system had a delay or could not
detect at all. In addition, there may be parallax problem in which the estimated joint
positions may be offset slightly from the actual in appearance because the devices are
estimating from a different height than the person in the view angle. Besides these
points to further verify, the system is able to effectively selectively choose the more
confident joint data and is capable of visualizing in 2-D display for user interactivity.

7 Future Directions

With the lab space open for testing soon, we hope to continue taking measurements
for error analysis across our system and the Vicon MOCAP system (with 6 cameras).
One approach is we assume the data from MOCAP is the ground truth, and compare

13

Kinect Synchronization Jeong, Wang

joint data streams obtained from several other systems. These systems could include
(1) single camera with OpenPose algorithm, (2) single camera with Marker-based
tracking, and (3) multiple synchronized camera system with Kinect’s body tracking
SDK.

Aside from system-level analysis, we could develop an interactive tool by adding
graphical features to our visualizations. For instance, a well-known figure or character
texture can be applied to our skeleton to engage the audience with real-time human
pose tracking. Extending this idea, we could also work in ROS environment to control
positions and orientations of drone units via Vicon MOCAP, using the open-sourced
Crazyflie library.

Some feasible improvements from the programming perspective could include
expanding the capability to multi-body tracking, which would require more in-depth
understanding of body ID numbering and how to handle cases where devices treat
the bodies with different IDs assigned. In addition, code optimization in calculating
the extrinsics assuming the devices would be positioned in fixed locations could be
achieved.

14

Kinect Synchronization Jeong, Wang

The project page is maintained at https://andyj1.github.io/kinect.

References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-Squares Fitting of Two 3-D
Point Sets”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence PAMI-9.5 (1987), pp. 698–700.

[2] Camera Calibration and 3D Reconstruction. url: https://docs.opencv.org/
2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.

html.

[3] M. U. Islam et al. “Yoga posture recognition by detecting human joint points
in real time using microsoft kinect”. In: 2017 IEEE Region 10 Humanitarian
Technology Conference (R10-HTC). 2017, pp. 668–673.

[4] Alessandro Napoli et al. “Performance analysis of a generalized motion capture
system using microsoft kinect 2.0”. In: Biomedical Signal Processing and Control
38 (Sept. 2017), pp. 265–280. doi: 10.1016/j.bspc.2017.06.006.

15

https://andyj1.github.io/kinect
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://doi.org/10.1016/j.bspc.2017.06.006

	Introduction
	Azure Kinect DK
	Related Work
	Environment Setup
	Configuration
	System Settings

	Procedure
	Steps
	Joint angles

	Results
	Future Directions

