
Design of a Communication Link – Part II (ECC)
 Jongoh (Andy) Jeong

Cooper Union, New York

ECE300 Communication Theory

19 December 2018

Abstract—This project aims to explore different methods of

error control coding schemes, i.e. block codes, bit-level and

symbol-level codes, convolutional codes. These coding schemes

applied to the provided channel with moderate intersymbol

interference are experimented and compared in terms of the

BER performance.

Keywords—Error control coding, intersymbol interference,

BER

I. INTRODUCTION

In Part I of the project, the BER performance through an
additive Gaussian white noise channel with moderate ISI was
explored for various modulation orders, i.e. M = 2, 4, 16,
with and without equalizers. Although equalizers such as
linear, decision-feedback and maximum likelihood sequence
estimator equalize, or correct, the modulated symbols fairly
well to the extent that BER reaches the order of 10e-5 at high
SNR (dB), i.e. 12 dB. However, error correction codes result
in better performance in BER. The uses of a single-level and
two-level error control coding schemes on BPSK are
explored in this part of the project.

II. BACKGROUND

 Instead of simply meeting the requirement of BER of
10e-6 at SNR of 12 dB, different error correction codes are
explored to compare against one another. Additionally, two-
level codes are experimented to see any improved results.

A. Block Code

 Block code schemes make use of first taking the input
data bit stream into blocks of k-bit streams, and mapping
each k-bit block into n-bit block. In the encoding process, it
is assumed that n > k, (n - k) check bits are added to each k-
bit block. The code rate of such code is given by the ratio k /
n, and the ratio (n – k) / k is called the redundancy of the
code. For a given set of (n, k) code, the minimum Hamming
distance is given by dmin = n – k, and it can correct up to t bits
of errors for it satisfies dmin = 2t + 1. Block codes in general
uses a k-by-n generator matrix, G = [P I]
or [I P] form, along with a (n-k)-by-n parity check matrix,
H = [I –P’] or [-P’ I] form, which give rise to the syndrome
of the error pattern. In this simulations, the generic linear,
Hamming, and cyclic block codes provided by MATLAB are
employed.

 For these block codes, parameters of interest are
generator matrix and parity-check matrix. Each uses gen2par,
gfprimdf, cyclpoly, respectively to produce generator
matrix/polynomial, to be used in encode and decode
processes. The generic linear block code requires a generator
matrix; typically generator matrix is input by the user, but in
this particular simulation, it was designed to derive from
cyclic parity check matrix so as to match the size and share
similar structure. A cyclic code is another linear block code
with the property that cyclic shifts are also codewords.

Hamming code, on the other hand, exploits an extra parity bit
to allow detection of a single error.

B. Bit-level Code

Bose-Chaudhuri-Hocquenghem code, or BCH code, is
another error correction code at bit-level. This code scheme
is a generalization of Hamming code for multiple-bit error
correction and include a large class of cyclic coes. There are
binary and non-binary types (Reed-Solomon is a special type
of nonbinary BCH). Often it is expressed as BCH(n,k,t)
where the parameters are as follows.

For m ≥ 3 and t < 2m – 1,

 n = 2m – 1, n = block length,
 m = number of bits per symbol

 n – k ≤ mt, number of parity-check bits

 dmin ≥ 2t + 1, minimum distance

Equation 1. BCH code parameters

The Communications Toolbox has options for parameters
in BCHEncoder(n,k,genpoly)—it is observed that the simple
declaration with n and k give the best of all three methods
through experiments. The parameters above provide several
freedom of block lengths, code rates, and error correction
capabilities. Some of the parameters compared in the
simulations are (15, 11) and (255, 247) as in Table 1.

n, codeword k, message t, correctible bits

7 4 1

15 11 1

 7 2

 3 3

63 57 1

 51 2

 45 3

127 120 1

 113 2

 106 3

255 247 1

 239 2

 199 7

Table 1. Sample parameters for block, data, and

error correcting capability lengths

C. Symbol-level Code

Reed-Solomon codes are a special type of non-binary
BCH code. The parameters for RS-codes are defined by

For nonbinary BCH codes with q-ary alphabets,

 n = qs – 1, block length

 (RS is nonbinary BCH with s = 1)

For t-error correction,

 n – k = 2t, number of parity check bits needed

 dmin = 2t + 1

Equation 2. RS Code parameters

RS codes tend to yield higher error correcting capability
compared to other block codes, given fixed number of check
bits. RS codes are effective in correcting burst errors and
produce satisfactory performance for a large set of input
symbols, i.e. Compact Disc (CD). For the simulations, the
same n and k parameters as in BCH code are employed to
compare BER performance at the same lengths.

D. Convolutional encoder/Viterbi decoder

Convolutional encoders make use of shift registers (flip
flops) as memory. They depend not only on the input bits but
also the internal states in producing encoded words. The
parameters n and k are the same as other block codes;
however there are other measures that define the code—
constraint length K = m + 1, where m = number of registers
in memory, and code rate = k / n. K is varied to control the
redundancy of the code. As a representation of the states,
trellis structure need to be defined in initialization, in which
the internal state transitions differ according to the generator
polynomials.

The trellis diagram represents all possible transition from
the states from one time instant to the next. The decoder
functions by calculating the error in bits with respect to its
state transitions per time instant. An example of a similar
trellis structure used is shown in Figure 1.

Fig 1. Example Trellis Diagram

In this simulation, two types of trellis structures are
experimented – (1) K = 7, g1 = 171(8), g2 = 133(8). Generator
polynomials, when not expressed in binary, are typically
shown in octal form. In binary, g1 = [1111001] and g2 =
[1011011]; and (2) K = 3, g1 = 7(8), g2 = 5(8), or g1 = [111],
g2 = [101] in binary form. Because there are two generator
polynomials and input of 1 bit, the code rate in both cases is
½ (1 bit in, 2 bits out).

Fig 2. Convolutional Encoder State Diagrams for (2) case

Convolutional encoders are often coupled with Viterbi
decoders. Viterbi decoding also utilizes the same trellis
structure with trace-back depths specified. In addition,
Viterbi algorithm can use ‘hard’ or ‘soft’ decision upon
decoding, with truncated or continuous modes. From

documentation of vitdec(), the operating modes are defined
as shown in Table 2. The decoding process is performed
either by following the path through the minimum Hamming
distance (‘hard’) or minimizing the log likelihood of the
symbols (probability) (‘soft’), and pruning unlikely paths
based on the chosen criteria.

Mode Meaning

continuous The encoder starts at the all-zeros state. The

decoder traces back from the state with the best

metric (from trellis). A delay of traceback depth

elapses before the first decoded symbol appears in

the output. Appropriate when decoder is invoked

repeatedly and want to preserve continuity

between successive invocations.

truncated The encoder starts at the all-zeros state. The

decoder traces back from the state with the best

metric. This mode incurs no delay. Appropriate

when you cannot assume the encoder ended at the

all-zeros state and do not want to preserve

continuity between successive invocations of the

decoder.

Table 2. Viterbi decoder modes

Since the continuous mode has some delay in decoding, it
should be noted that the bit rate may be attenuated for the
mode. Both modes are experimented in comparison with
other codes.

III. CONSIDERATIONS

A. Random and Burst Error Correction

In correcting errors, it is necessary to understand possible
types of errors present in the transmitted symbols. First is
burst errors—errors that occur in many consecutive bits
rather than occurring in bits independently of each other.
Such errors can be corrected by Reed-Solomon codes, which
operate on alphabet sizes larger than binary (since
nonbinary) and this property allows for excellent burst error
correction capabilities. Burst errors are bound to occur in
clusters, there is a high chance of several binary errors
contributing to a single symbol errors. Another type is
random errors, which occur randomly in a data stream due to
its inherent limitations—this can be well handled by BCH
codes.

B. Tradeoffs

Upon selecting a coding scheme, tradeoffs among BER
performance, time complexity and amount of redundancy
needed to be taken into account. As more symbols are sent
through the AWGN channel or the block and message length
increases, the time complexity follows to increase.

 Experimentation with equalizer in place in addition to the
error correction codes showed no better results—even worse
some times. This is due to correction of burst errors in the
symbols through the equalizer, and the equalized signal
through decoder may not improve due to “ordered” errors,
which are rather harder to correct than dispersed ones.

C. Equations (SNR, bit rate)

Bit rate is the ratio of usable bits to total message bits
sent. In error correction coding, the code rate determines how
many usable bits are received at the end, whereas when using
equalizer the training sequence determines the rate. For two-
level error control codes, the code rates are multiplied. SNR
noise scaling is another measure that needs to be adjusted—

the SNR increased by the code rate needs to be added in
calculation, as in Equation 3.

Bit rate = (sampling rate) * (# bits/symbol) * ,

SNR (dB) =

 Eb/No + 10*log(code rate) – 10*log(sampling rate)

 (add 10*log(2) for BPSK)

Equation 3. Bit rate and SNR adjustment

IV. EXPERIMENTS

The aforementioned error correction coding schemes are
experimented with the following parameters:

Level Code Type Parameters

1 Single-level Block (3 types) n = 15, k =11

2 n = 255, k = 247

3 BCH n = 15, k =11

4 n = 255, k = 247

5 RS n = 15, k =11

6 n = 255, k = 247

7 Convolutional code rate = ½ , mode = trunc.,

decision = hard and soft,

traceback depth = 100,

trellis = (171,133), K = 7

8 code rate = ½ , mode = cont.,

decision = hard and soft,

traceback depth = 100,

trellis = (171,133), K = 7

9 Two-level Convolutional

with BCH

n = 15, k =11,

code rate = ½ , mode = trunc.,

decision = hard and soft,

traceback depth = 100,

trellis = (7, 5), K = 3

10 n = 255, k =247,

code rate = ½ , mode = trunc.,

decision = hard and soft,

traceback depth = 100,

trellis = (7, 5), K = 3

11 Convolutional

with RS

n = 15, k =11,

code rate = ½ , mode = trunc.,

decision = hard and soft,

traceback depth = 100,

trellis = (7, 5), K = 3

12 n = 255, k =247,

code rate = ½ , mode = trunc.,

decision = hard and soft,

traceback depth = 100,

trellis = (7, 5), K = 3

Table 3. Parameters for the performed experiments

V. RESULTS

The MATLAB simulation results for the experiments
listed above are shown in the following figures and tables.

A. Single-level code

Fig 3. Block, BCH, Convolutional Code (15,11) (1), (3), (7),

Symbols = 10,000

Fig 4. Block, BCH, Convolutional Code (255,247) (2), (4), (8),

symbols sent = 10,000 * ‘trunc’ = ‘cont’ this case (overlapped)

Fig 5. RS Code (15,11) and (255,247) (5), (6), Symbol sent = 1,000

• BER data at 12 dB (15,11)

- Data for (15,11)

Code Type BER Bit Rate

Hamming block 4.358 e-4 (at 12 dB) 0.73

Generic linear block 4.358 e-4 (at 12 dB) 0.73

Cyclic block 4.358 e-4 (at 12 dB) 0.73

BCH 1.671 e-3 (at 12 dB) 0.73

RS 5.417 e-3 (at 12 dB) 0.73

Convolutional (1/2)

 – Hard (Trunc)

9.973 e-6 (at 12 dB) 0.50

Convolutional (1/2)

 – Soft (Trunc)

4.755 e-6 (at 8 dB) 0.50

Convolutional (1/2)

 – Hard (Cont)

5.468 e-6 (at 12 dB) 0.495

Convolutional (1/2)

 – Soft (Cont)

1.633 e-6 (at 8 dB) 0.495

* continuous mode has delay(=traceback depth), reducing
the bit rate

• BER data at 12 dB (255,247)

- Data for (255,247)

Code Type BER Bit Rate

Hamming block 4.964 e-3 (at 12 dB) 0.97

Generic linear block 6.814 e-3 (at 12 dB) 0.97

Cyclic block 6.798 e-3 (at 12 dB) 0.97

BCH 5.593 e-3 (at 12 dB) 0.97

RS 1.182 e-3 (at 12 dB) 0.97

Convolutional (1/2)

 – Hard (Trunc)

6.195 e-6 (at 12 dB) 0.50

Convolutional (1/2)

 – Soft (Trunc)

1.539 e-6 (at 8 dB) 0.50

Convolutional (1/2)

 – Hard (Cont)

6.195 e-6 (at 12 dB) 0.495

Convolutional (1/2)

 – Soft (Cont)

1.539 e-6 (at 8 dB) 0.495

* convolutional – hard (trunc) and (cont) overlapped, and
also for soft

B. Two-level code

Fig 6. Two-level Convolutional BCH and RS Code (15,11) (9), (11)

Fig 7. Two-level Convolutional BCH and RS Code (255,247) (10), (12)

• BER data for (15,11) and (255,247), truncated mode

- Data

Code Type BER Bit Rate

Convolutional (1/2)

– RS (15,11)

3.636 e-8 (12 dB) 0.37

Convolutional (1/2)

– RS (255,247)

4.049 e-7 (8 dB) 0.48

Convolutional (1/2)

– BCH (15,11)

5.364 e-7 (12 dB) 0.37

Convolutional (1/2)

– BCH (255,247)

3.872 e-6 (10 dB) 0.48

* mode for convolutional: truncated, nSymbols = 1e3

C. Analysis

• For single-level coding scheme, the convolutional
code reached the desired target of 10e-6 at 12 dB
SNR. Hard decision mode was relatively easier to
achieve with smaller number of symbols transmitted
than soft decision mode, and thus with 10,000
symbols it did not reach a nonzero value at 12 dB
with soft decision. With the same number of symbols
sent, BCH code performance was not outstandingly
better than linear block codes; with one order less
symbols sent, RS code was not much better either.
Possible improvements could result from specifying
the generator polynomial to the BCH encoder/
decoder, or not specifying it for RS code (since the
opposite was conducted). The bit rate for the
convolutional codes, although it resulted in better
BER, was as low as its code rate, which is lower than

the bit rate for other block codes used. This implies
that there is inverse relationship between BER and bit
rate. The bit rate for continuous mode was lower than
the truncated mode because there was supposedly a
delay of length equal to the traceback length, and that
is not usable at the end until the delay arrives; thus it
was accounted for in the bit rate calculation.

• For two-level code, the truncated mode for
convolutional codes are used. The two-level error
correction code works by coding with either BCH or
RS code in the outer part, and convolutional coding
the inner part of the processing loop. The results show
slightly better BER than single-level for that reason;
however, the bit rate decreases as its price. Since it is
double-coded, its time complexity is much higher
than single, and therefore only thousand samples
were tried; it is evidenced in Fig 7., where it fails to
achieve nonzero BER at higher than 10 dB SNR,
whereas in Fig 6., it does achieve until 12 dB SNR.

D. Coding Gains

 There seems to be not much coding gain in SNR for
code types other than soft-decision convolutional codes.
This is clearly evidenced in Fig 7., in which BER of
order of 10e-7 is achieved with 2 dB coding gain with
Conv(1/2) + RS(255,247) than with Conv(1/2) +
BCH(15,11).

VI. CONCLUSION

 The target BER of 10e-6 was achieved by the
convolutional encode – Viterbi decode scheme.

ACKNOWLEDGMENT

 Thank you professor Keene, for helping to guide
through various error correction coding schemes,
calculation of bit rates, and also other advice forgotten to
be mentioned.

