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Abstract—This project aims to explore different methods of 

error control coding schemes, i.e. block codes, bit-level and 

symbol-level codes, convolutional codes. These coding schemes 

applied to the provided channel with moderate intersymbol 

interference are experimented and compared in terms of the 

BER performance.  
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I. INTRODUCTION 

In Part I of the project, the BER performance through an 
additive Gaussian white noise channel with moderate ISI was 
explored for various modulation orders, i.e. M = 2, 4, 16, 
with and without equalizers. Although equalizers such as 
linear, decision-feedback and maximum likelihood sequence 
estimator equalize, or correct, the modulated symbols fairly 
well to the extent that BER reaches the order of 10e-5 at high 
SNR (dB), i.e. 12 dB. However, error correction codes result 
in better performance in BER. The uses of a single-level and 
two-level error control coding schemes on BPSK are 
explored in this part of the project. 

II. BACKGROUND 

 Instead of simply meeting the requirement of BER of 
10e-6 at SNR of 12 dB, different error correction codes are 
explored to compare against one another. Additionally, two-
level codes are experimented to see any improved results. 

A. Block Code 

 Block code schemes make use of first taking the input 
data bit stream into blocks of k-bit streams, and mapping 
each k-bit block into n-bit block. In the encoding process, it 
is assumed that n > k, (n - k) check bits are added to each k-
bit block. The code rate of such code is given by the ratio k / 
n, and the ratio (n – k) / k is called the redundancy of the 
code. For a given set of (n, k) code, the minimum Hamming 
distance is given by dmin = n – k, and it can correct up to t bits 
of errors for it satisfies dmin = 2t + 1. Block codes in general 
uses a k-by-n generator matrix, G = [P I]  
or [I P] form, along with a (n-k)-by-n parity check matrix,  
H = [I –P’] or [-P’ I] form, which give rise to the syndrome 
of the error pattern. In this simulations, the generic linear, 
Hamming, and cyclic block codes provided by MATLAB are 
employed.  

 For these block codes, parameters of interest are 
generator matrix and parity-check matrix. Each uses gen2par, 
gfprimdf, cyclpoly, respectively to produce generator 
matrix/polynomial, to be used in encode and decode 
processes. The generic linear block code requires a generator 
matrix; typically generator matrix is input by the user, but in 
this particular simulation, it was designed to derive from 
cyclic parity check matrix so as to match the size and share 
similar structure. A cyclic code is another linear block code 
with the property that cyclic shifts are also codewords. 

Hamming code, on the other hand, exploits an extra parity bit 
to allow detection of a single error. 

B.  Bit-level Code 

Bose-Chaudhuri-Hocquenghem code, or BCH code, is 
another error correction code at bit-level. This code scheme 
is a generalization of Hamming code for multiple-bit error 
correction and include a large class of cyclic coes. There are 
binary and non-binary types (Reed-Solomon is a special type 
of nonbinary BCH). Often it is expressed as BCH(n,k,t) 
where the parameters are as follows. 

For m ≥ 3 and t < 2m – 1, 

 n = 2m – 1,  n = block length,  
   m = number of bits per symbol 

 n – k ≤ mt,  number of parity-check bits 

 dmin ≥ 2t + 1,  minimum distance 

Equation 1. BCH code parameters 

The Communications Toolbox has options for parameters 
in BCHEncoder(n,k,genpoly)—it is observed that the simple 
declaration with n and k give the best of all three methods 
through experiments. The parameters above provide several 
freedom of block lengths, code rates, and error correction 
capabilities. Some of the parameters compared in the 
simulations are (15, 11) and (255, 247) as in Table 1. 

n, codeword k, message t, correctible bits 

7 4 1 

15 11 1 

 7 2 

 3 3 

63 57 1 

 51 2 

 45 3 

127 120 1 

 113 2 

 106 3 

255 247 1 

 239 2 

 199 7 

Table 1. Sample parameters for block, data, and  

error correcting capability lengths 

C. Symbol-level Code 

Reed-Solomon codes are a special type of non-binary 
BCH code. The parameters for RS-codes are defined by 

For nonbinary BCH codes with q-ary alphabets, 

 n = qs – 1, block length 

 (RS is nonbinary BCH with s = 1) 

For t-error correction, 

 n – k = 2t, number of parity check bits needed 

 dmin = 2t + 1 

Equation 2. RS Code parameters 



RS codes tend to yield higher error correcting capability 
compared to other block codes, given fixed number of check 
bits. RS codes are effective in correcting burst errors and 
produce satisfactory performance for a large set of input 
symbols, i.e. Compact Disc (CD). For the simulations, the 
same n and k parameters as in BCH code are employed to 
compare BER performance at the same lengths. 

D. Convolutional encoder/Viterbi decoder 

Convolutional encoders make use of shift registers (flip 
flops) as memory. They depend not only on the input bits but 
also the internal states in producing encoded words. The 
parameters n and k are the same as other block codes; 
however there are other measures that define the code—
constraint length K = m + 1, where m = number of registers 
in memory, and code rate = k / n. K is varied to control the 
redundancy of the code. As a representation of the states, 
trellis structure need to be defined in initialization, in which 
the internal state transitions differ according to the generator 
polynomials.  

The trellis diagram represents all possible transition from 
the states from one time instant to the next. The decoder 
functions by calculating the error in bits with respect to its 
state transitions per time instant. An example of a similar 
trellis structure used is shown in Figure 1. 

Fig 1. Example Trellis Diagram 

In this simulation, two types of trellis structures are 
experimented – (1) K = 7, g1 = 171(8), g2 = 133(8). Generator 
polynomials, when not expressed in binary, are typically 
shown in octal form. In binary, g1 = [1111001] and g2 = 
[1011011]; and (2) K = 3, g1 = 7(8), g2 = 5(8), or g1 = [111], 
g2 = [101] in binary form. Because there are two generator 
polynomials and input of 1 bit, the code rate in both cases is 
½  (1 bit in, 2 bits out). 

Fig 2. Convolutional Encoder State Diagrams for (2) case 

Convolutional encoders are often coupled with Viterbi 
decoders. Viterbi decoding also utilizes the same trellis 
structure with trace-back depths specified. In addition, 
Viterbi algorithm can use ‘hard’ or ‘soft’ decision upon 
decoding, with truncated or continuous modes. From 

documentation of vitdec(), the operating modes are defined 
as shown in Table 2. The decoding process is performed 
either by following the path through the minimum Hamming 
distance (‘hard’) or minimizing the log likelihood of the 
symbols (probability) (‘soft’), and pruning unlikely paths 
based on the chosen criteria. 

Mode Meaning 

continuous The encoder starts at the all-zeros state. The 

decoder traces back from the state with the best 

metric (from trellis). A delay of traceback depth 

elapses before the first decoded symbol appears in 

the output. Appropriate when decoder is invoked 

repeatedly and want to preserve continuity 

between successive invocations. 

truncated The encoder starts at the all-zeros state. The 

decoder traces back from the state with the best 

metric. This mode incurs no delay. Appropriate 

when you cannot assume the encoder ended at the 

all-zeros state and do not want to preserve 

continuity between successive invocations of the 

decoder. 

Table 2. Viterbi decoder modes 

Since the continuous mode has some delay in decoding, it 
should be noted that the bit rate may be attenuated for the 
mode. Both modes are experimented in comparison with 
other codes. 

III. CONSIDERATIONS 

A. Random and Burst Error Correction 

In correcting errors, it is necessary to understand possible 
types of errors present in the transmitted symbols. First is 
burst errors—errors that occur in many consecutive bits 
rather than occurring in bits independently of each other. 
Such errors can be corrected by Reed-Solomon codes, which 
operate on alphabet sizes larger than binary (since 
nonbinary) and this property allows for excellent burst error 
correction capabilities. Burst errors are bound to occur in 
clusters, there is a high chance of several binary errors 
contributing to a single symbol errors. Another type is 
random errors, which occur randomly in a data stream due to 
its inherent limitations—this can be well handled by BCH 
codes. 

B. Tradeoffs 

Upon selecting a coding scheme, tradeoffs among BER 
performance, time complexity and amount of redundancy 
needed to be taken into account. As more symbols are sent 
through the AWGN channel or the block and message length 
increases, the time complexity follows to increase.  

 Experimentation with equalizer in place in addition to the 
error correction codes showed no better results—even worse 
some times. This is due to correction of burst errors in the 
symbols through the equalizer, and the equalized signal 
through decoder may not improve due to “ordered” errors, 
which are rather harder to correct than dispersed ones. 

C. Equations (SNR, bit rate) 

Bit rate is the ratio of usable bits to total message bits 
sent. In error correction coding, the code rate determines how 
many usable bits are received at the end, whereas when using 
equalizer the training sequence determines the rate. For two-
level error control codes, the code rates are multiplied. SNR 
noise scaling is another measure that needs to be adjusted—



the SNR increased by the code rate needs to be added in 
calculation, as in Equation 3. 

Bit rate = (sampling rate) * (# bits/symbol) *  , 

 

SNR (dB) =   

 Eb/No + 10*log(code rate) – 10*log(sampling rate) 

               (add 10*log(2) for BPSK) 

Equation 3. Bit rate and SNR adjustment 

IV. EXPERIMENTS  

The aforementioned error correction coding schemes are 
experimented with the following parameters: 

# Level Code Type Parameters 

1 Single-level Block (3 types) n = 15, k =11 

2 n = 255, k = 247 

3 BCH n = 15, k =11 

4 n = 255, k = 247 

5 RS n = 15, k =11 

6 n = 255, k = 247 

7 Convolutional code rate = ½ , mode = trunc.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (171,133), K = 7 

8 code rate = ½ , mode = cont.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (171,133), K = 7 

9 Two-level Convolutional 

with BCH 

n = 15, k =11, 

code rate = ½ , mode = trunc.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (7, 5), K = 3 

10 n = 255, k =247, 

code rate = ½ , mode = trunc.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (7, 5), K = 3 

11 Convolutional 

with RS 

n = 15, k =11, 

code rate = ½ , mode = trunc.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (7, 5), K = 3 

12 n = 255, k =247, 

code rate = ½ , mode = trunc.,  

decision = hard and soft, 

traceback depth = 100, 

trellis = (7, 5), K = 3 

Table 3. Parameters for the performed experiments 

V. RESULTS 

The MATLAB simulation results for the experiments 
listed above are shown in the following figures and tables. 

A. Single-level code 

Fig 3. Block, BCH, Convolutional Code (15,11) (1), (3), (7),  

Symbols = 10,000 

 

Fig 4. Block, BCH, Convolutional Code (255,247) (2), (4), (8), 

symbols sent = 10,000 * ‘trunc’ = ‘cont’ this case (overlapped) 

 

Fig 5. RS Code (15,11) and (255,247) (5), (6), Symbol sent = 1,000 

• BER data at 12 dB (15,11)  

- Data for (15,11) 

Code Type BER Bit Rate 

Hamming block 4.358 e-4 (at 12 dB) 0.73 

Generic linear block 4.358 e-4 (at 12 dB) 0.73 

Cyclic block 4.358 e-4 (at 12 dB) 0.73 

BCH 1.671 e-3 (at 12 dB) 0.73 

RS 5.417 e-3 (at 12 dB) 0.73 

Convolutional (1/2) 

 – Hard (Trunc) 

9.973 e-6 (at 12 dB) 0.50 

Convolutional (1/2) 

 – Soft (Trunc) 

4.755 e-6 (at 8 dB) 0.50 

Convolutional (1/2) 

 – Hard (Cont) 

5.468 e-6 (at 12 dB) 0.495 

Convolutional (1/2) 

 – Soft (Cont) 

1.633 e-6 (at 8 dB) 0.495 

* continuous mode has delay(=traceback depth), reducing 
the bit rate 

 

• BER data at 12 dB (255,247) 

- Data for (255,247) 

Code Type BER Bit Rate 

Hamming block 4.964 e-3 (at 12 dB) 0.97 

Generic linear block 6.814 e-3 (at 12 dB) 0.97 

Cyclic block 6.798 e-3 (at 12 dB) 0.97 

BCH 5.593 e-3 (at 12 dB) 0.97 

RS 1.182 e-3 (at 12 dB) 0.97 

Convolutional (1/2) 

 – Hard (Trunc) 

6.195 e-6 (at 12 dB) 0.50 

Convolutional (1/2) 

 – Soft (Trunc) 

1.539 e-6 (at 8 dB) 0.50 

Convolutional (1/2) 

 – Hard (Cont) 

6.195 e-6 (at 12 dB) 0.495 

Convolutional (1/2) 

 – Soft (Cont) 

1.539 e-6 (at 8 dB) 0.495 



* convolutional – hard (trunc) and (cont) overlapped, and 
also for soft 

B. Two-level code 

 

Fig 6. Two-level Convolutional BCH and RS Code (15,11) (9), (11) 

 

Fig 7. Two-level Convolutional BCH and RS Code (255,247) (10), (12) 

• BER data for (15,11) and (255,247), truncated mode 

- Data 

Code Type BER  Bit Rate 

Convolutional (1/2) 

– RS (15,11) 

3.636 e-8 (12 dB) 0.37 

Convolutional (1/2) 

– RS (255,247) 

4.049 e-7 (8 dB) 0.48 

Convolutional (1/2) 

– BCH (15,11) 

5.364 e-7 (12 dB) 0.37 

Convolutional (1/2) 

– BCH (255,247) 

3.872 e-6 (10 dB) 0.48 

* mode for convolutional: truncated, nSymbols = 1e3 

 

C. Analysis 

• For single-level coding scheme, the convolutional 
code reached the desired target of 10e-6 at 12 dB 
SNR. Hard decision mode was relatively easier to 
achieve with smaller number of symbols transmitted 
than soft decision mode, and thus with 10,000 
symbols it did not reach a nonzero value at 12 dB 
with soft decision. With the same number of symbols 
sent, BCH code performance was not outstandingly 
better than linear block codes; with one order less 
symbols sent, RS code was not much better either. 
Possible improvements could result from specifying 
the generator polynomial to the BCH encoder/ 
decoder, or not specifying it for RS code (since the 
opposite was conducted). The bit rate for the 
convolutional codes, although it resulted in better 
BER, was as low as its code rate, which is lower than 

the bit rate for other block codes used. This implies 
that there is inverse relationship between BER and bit 
rate. The bit rate for continuous mode was lower than 
the truncated mode because there was supposedly a 
delay of length equal to the traceback length, and that 
is not usable at the end until the delay arrives; thus it 
was accounted for in the bit rate calculation. 

• For two-level code, the truncated mode for 
convolutional codes are used. The two-level error 
correction code works by coding with either BCH or 
RS code in the outer part, and convolutional coding 
the inner part of the processing loop. The results show 
slightly better BER than single-level for that reason; 
however, the bit rate decreases as its price. Since it is 
double-coded, its time complexity is much higher 
than single, and therefore only thousand samples 
were tried; it is evidenced in Fig 7., where it fails to 
achieve nonzero BER at higher than 10 dB SNR, 
whereas in Fig 6., it does achieve until 12 dB SNR. 

D. Coding Gains 

 There seems to be not much coding gain in SNR for 
code types other than soft-decision convolutional codes. 
This is clearly evidenced in Fig 7., in which BER of 
order of 10e-7 is achieved with 2 dB coding gain with 
Conv(1/2) + RS(255,247) than  with Conv(1/2) + 
BCH(15,11).  

VI. CONCLUSION 

 The target BER of 10e-6 was achieved by the 
convolutional encode – Viterbi decode scheme. 
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